本文介绍了Halo 1.0,这是一种开放式的可扩展多代理软件框架,该框架实现了一组建议的硬件 - 不合命固式加速器编排(HALO)原理。Halo实现了一个新颖的以计算为中心的消息传递接口(C^2MPI)规范,以启用在异质加速器上的硬件 - 敏捷主机应用程序的性能便携式执行。基于Intel Xeon E5-2620 CPU,Intel Arria 10 GX FPGA和NVIDIA GEFORCE RTX RTX 2080 TI GPU的八个广泛使用的HPC子例程的实验结果表明,Halo 1.0允许在所有统一的控制流程中运行所有统一的控制流程。计算具有最高性能可移植性得分的设备,该设备的最高五个数量级比基于OPENCL的解决方案高五个数量级。
translated by 谷歌翻译
For satellite images, the presence of clouds presents a problem as clouds obscure more than half to two-thirds of the ground information. This problem causes many issues for reliability in a noise-free environment to communicate data and other applications that need seamless monitoring. Removing the clouds from the images while keeping the background pixels intact can help address the mentioned issues. Recently, deep learning methods have become popular for researching cloud removal by demonstrating promising results, among which Generative Adversarial Networks (GAN) have shown considerably better performance. In this project, we aim to address cloud removal from satellite images using AttentionGAN and then compare our results by reproducing the results obtained using traditional GANs and auto-encoders. We use RICE dataset. The outcome of this project can be used to develop applications that require cloud-free satellite images. Moreover, our results could be helpful for making further research improvements.
translated by 谷歌翻译
当预测不久的将来的环境中的要素状态时,Endley情况意识模型的最高级别称为投影。在网络安全状况的意识中,对高级持续威胁(APT)的投影需要预测APT的下一步。威胁正在不断变化,变得越来越复杂。由于受监督和无监督的学习方法需要APT数据集​​来投影APT的下一步,因此他们无法识别未知的APT威胁。在强化学习方法中,代理与环境相互作用,因此它可能会投射出已知和未知APT的下一步。到目前为止,尚未使用强化学习来计划APTS的下一步。在强化学习中,代理商使用先前的状态和行动来近似当前状态的最佳动作。当状态和行动的数量丰富时,代理人采用神经网络,该网络被称为深度学习来近似每个州的最佳动作。在本文中,我们提出了一个深厚的加固学习系统,以预测APT的下一步。随着攻击步骤之间的某种关系,我们采用长期短期记忆(LSTM)方法来近似每个状态的最佳动作。在我们提出的系统中,根据当前情况,我们将投影APT威胁的下一步。
translated by 谷歌翻译
在医学中,图像注册对于图像引导的干预措施和其他临床应用至关重要。但是,很难解决,通过机器学习的出现,最近在该领域的医疗图像注册方面已经取得了很大的进步。深度神经网络的实施为某些医学应用提供了机会,例如在更少的时间内进行图像注册,以高精度,在操作过程中对抗肿瘤中发挥关键作用。当前的研究对基于无监督的深神经网络的医学图像注册研究的最新文献进行了全面的范围审查,其中包括到本领域在此日期中发表的所有相关研究。在这里,我们试图总结医学领域中无监督的基于深度学习的注册方法的最新发展和应用。在当前的全面范围审查中,精心讨论和传达了基本和主要概念,技术,从不同观点,新颖性和未来方向的统计分析。此外,这篇评论希望帮助那些被这一领域铆接的活跃读者深入了解这一激动人心的领域。
translated by 谷歌翻译
糖尿病(DM)可导致严重的微脉管破坏,最终导致糖尿病性视网膜病变(DR)或由于糖尿病引起的眼睛并发症。如果不受组织的检查,这种疾病会随着时间的流逝而增加,并最终导致完全视力丧失。检测到这种光学发展的一般方法是通过检查视网膜图像的血管,视神经头,微型毛发,出血,渗出液等。最终,这受到经验丰富的眼科医生和大量DM案例的数量的限制。为了启用早期有效的DR诊断,眼科领域需要强大的计算机辅助诊断(CAD)系统。我们的审查旨在为从学生到成熟的研究人员提供给任何人,他们想了解CAD系统及其算法可以完成的工作,再到建模以及计算机视觉和模式识别中的视网膜图像处理领域的发展方向。对于刚开始的人来说,我们特别强调了不同数据库和算法框架的逻辑,优势和缺点,重点是最近的方法。
translated by 谷歌翻译
在本文中,我们研究了一类二聚体优化问题,也称为简单的双重优化,在其中,我们将光滑的目标函数最小化,而不是另一个凸的约束优化问题的最佳解决方案集。已经开发了几种解决此类问题的迭代方法。 las,它们的收敛保证并不令人满意,因为它们要么渐近,要么渐近,要么是收敛速度缓慢且最佳的。为了解决这个问题,在本文中,我们介绍了Frank-Wolfe(FW)方法的概括,以解决考虑的问题。我们方法的主要思想是通过切割平面在局部近似低级问题的解决方案集,然后运行FW型更新以减少上层目标。当上层目标是凸面时,我们表明我们的方法需要$ {\ mathcal {o}}(\ max \ {1/\ epsilon_f,1/\ epsilon_g \})$迭代才能找到$ \ \ \ \ \ \ epsilon_f $ - 最佳目标目标和$ \ epsilon_g $ - 最佳目标目标。此外,当高级目标是非convex时,我们的方法需要$ {\ MATHCAL {o}}(\ max \ {1/\ epsilon_f^2,1/(\ epsilon_f \ epsilon_g})查找$(\ epsilon_f,\ epsilon_g)$ - 最佳解决方案。我们进一步证明了在“较低级别问题的老年人错误约束假设”下的更强的融合保证。据我们所知,我们的方法实现了所考虑的二聚体问题的最著名的迭代复杂性。我们还向数值实验提出了数值实验。与最先进的方法相比,展示了我们方法的出色性能。
translated by 谷歌翻译
激光加工是一种高度灵活的非接触式制造技术,在学术界和行业中广泛使用。由于光和物质之间的非线性相互作用,模拟方法非常重要,因为它们通过理解激光处理参数之间的相互关系来帮助增强加工质量。另一方面,实验处理参数优化建议对可用处理参数空间进行系统且耗时的研究。一种智能策略是采用机器学习(ML)技术来捕获Picsecond激光加工参数之间的关系,以找到适当的参数组合,以创建对工业级氧化铝陶瓷的所需削减,并具有深层,平滑和无缺陷的模式。激光参数,例如梁振幅和频率,扫描仪的传递速度以及扫描仪与样品表面的垂直距离的速度,用于预测深度,最高宽度和底部宽度使用ML型号雕刻通道。由于激光参数之间的复杂相关性,因此表明神经网络(NN)是预测输出最有效的。配备了ML模型,该模型可以捕获激光参数与雕刻通道尺寸之间的互连,可以预测所需的输入参数以实现目标通道几何形状。该策略大大降低了开发阶段实验激光加工的成本和精力,而不会损害准确性或性能。开发的技术可以应用于各种陶瓷激光加工过程。
translated by 谷歌翻译
在通过梯度下降训练过度参数化的模型函数时,有时参数不会显着变化,并且保持接近其初始值。该现象称为懒惰训练,并激发了对模型函数围绕初始参数的线性近似的考虑。在懒惰的制度中,这种线性近似模仿了参数化函数的行为,其相关内核称为切线内核,指定了模型的训练性能。众所周知,在宽度较大的(经典)神经网络的情况下进行懒惰训练。在本文中,我们表明,几何局部参数化量子电路的训练进入了大量Qubits的懒惰制度。更准确地说,我们证明了这种几何局部参数化量子电路的变化速率,以及相关量子模型函数的线性近似的精确度;随着Qubits的数量的增加,这两个边界都趋于零。我们通过数值模拟支持我们的分析结果。
translated by 谷歌翻译
勘探是基于深入强化学习(DRL)的无模型导航控制的基本挑战,因为针对目标驱动的导航任务的典型勘探技术依赖于噪声或贪婪的政策,这些策略对奖励的密度敏感。实际上,机器人总是在复杂的混乱环境中部署,其中包含密集的障碍和狭窄的通道,从而提高了很难探索训练的自然备用奖励。当预定义的任务复杂并且具有丰富的表现力时,这种问题变得更加严重。在本文中,我们专注于这两个方面,并为任务指导的机器人提供了一种深层的政策梯度算法,该机器人在复杂的混乱环境中部署了未知的动态系统。线性时间逻辑(LTL)用于表达丰富的机器人规范。为了克服训练期间探索的环境挑战,我们提出了一种新颖的路径计划引导奖励方案,该方案在状态空间上密集,并且至关重要的是,由于黑盒动力学而导致计算的几何路径的不可行性。为了促进LTL满意度,我们的方法将LTL任务分解为使用分布式DRL解决的子任务,在该子任务中,可以使用深层政策梯度算法并行培训子任务。我们的框架被证明可显着提高性能(有效性,效率)和对大规模复杂环境中复杂任务的机器人的探索。可以在YouTube频道上找到视频演示:https://youtu.be/yqrq2-ymtik。
translated by 谷歌翻译
它是科学技术的基础,能够预测化学反应及其性质。为实现此类技能,重要的是要培养良好的化学反应表示,或者可以自动从数据中学习此类表示的良好深度学习架构。目前没有普遍和广泛采用的方法,可强健地代表化学反应。大多数现有方法患有一个或多个缺点,例如:(1)缺乏普遍性; (2)缺乏稳健性; (3)缺乏可解释性;或(4)需要过度手动预处理。在这里,我们利用基于图的分子结构表示,以开发和测试一个超图注意神经网络方法,以一次解决反应表示和性能 - 预测问题,减轻了上述缺点。我们使用三个独立数据集化学反应评估三个实验中的这种超照片表示。在所有实验中,基于超图的方法与其他表示和它们相应的化学反应模型相匹配或优于相应的模型,同时产生可解释的多级表示。
translated by 谷歌翻译